Efficient cooling solution for high performance chips

Imec, the world-leading research and innovation hub in nano-electronics and digital technology, today announced that it has demonstrated for the first time a low-cost impingement-based solution for cooling chips at package level.  This achievement is an important innovation to tackle the ever-increasing cooling demands of high-performance 3D chips and systems.

Multi-jet cooler. Credit: IMEC

Multi-jet cooler. Credit: IMEC

High performance electronic systems are coping with increasing cooling demands. Conventional solutions realize cooling through combining heat exchangers that are bonded to heat spreaders that are then attached to the chip backside. These are all interconnected with thermal interface materials (TIM) that create a fixed thermal resistance that can't be overcome by introducing more efficient cooling solutions. Direct cooling on the chip backside would be more efficient, but current direct cooling microchannel solutions create a temperature gradient across the chip surface.

The ideal chip cooler is an impingement-based cooler with distributed coolant outlets. It puts the cooling liquid in direct contact with the chip and sprays the liquid perpendicular to the chip surface. This ensures that all the liquid on the chip surface has the same temperature and reduces the contact time between coolant and chip. However, current impingement coolers have the drawback that they are silicon-based and thus expensive, or that their nozzle diameters and use processes are not compatible with the chip packaging process flow.

3D-shaped-polymer-cooler. Credit: IMEC

3D-shaped-polymer-cooler. Credit: IMEC

news

Over the past 20 years, scientists have been developing metamaterials, or materials that don't occur naturally and whose mechanical properties result from their designed structure rather than their chemical composition. They allow researchers to create materials with specific properties and shapes. Metamaterials are still not widely used in everyday objects, but that could soon change.

Read more

A group of researchers led by Stanislav Evlashin, a senior research scientist at the Skoltech Center for Design, Manufacturing and Materials (CDMM), demonstrated a simple and 100% efficient method of converting silicon wafers into nanoparticles in an aqueous solution. This discovery can help find an environmentally friendly way of silicon recycling without using toxic chemicals.

Read more

View all news